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S U M M A R Y
Based on seismic array, the conventional frequency–wavenumber method, or the FK method,
is generally used to determine the backazimuth and slowness parameters for the plane wave
arriving at the seismic array. However, at low frequencies the FK method results in low-
resolution estimation of both parameters. To overcome this issue, we have developed a new
seismic array analysis method based on sparsity-constrained (SC) inversion to better determine
the backazimuth and slowness parameters. The SC method takes advantage of the sparsity
of the incoming wave front in the domain of slowness and backazimuth. We have tested
the proposed SC method using synthetic data calculated for Shanghai Earthquake Agency
Array (SEAA) from one single source and two sources, respectively. Compared to the FK
method, the proposed SC method has a much higher resolution in estimating the backazimuth
and slowness parameters. Furthermore, the SC method can more easily separate multiple
sources and estimate the two parameters. We also compare the proposed SC method with
another advanced seismic array analysis method CLEAN-PSF, which can find the position and
strength of point sources. Overall, our proposed SC method performs better than or at least at
the comparable level as the CLEAN-PSF method. We further demonstrate the effectiveness of
the new method on the 2008 Mw 8.0 Wenchuan earthquake data recorded on the SEAA. The
deviation between theoretic backazimuth and optimal solution is approximately 4◦, indicating
the capability of the proposed SC method for reliably estimating the backazimuth of teleseismic
event based on a seismic array.
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1 I N T RO D U C T I O N

An array consisting of many sensors in a certain configuration can
be used to better detect and characterize incoming wavefields from
distant sources, which has been used in many areas such as seis-
mology, astronomy and acoustics (Johnson & Dudgeon 1992). In
seismology, conventional beamforming (CBF) method is widely
used to detect weak signals and to determine backazimuth and
apparent slowness parameters of the incoming wave front across
seismic array (Rost & Thomas 2002, 2009; Schweitzer et al. 2002).
The backazimuth is an important parameter for constraining source
location in combination with arrival times and slowness estimation
(Schweitzer 2001; Oye & Roth 2003; Bayer et al. 2012; Gibbons
et al. 2015; Chen et al. 2016). In addition, array beamforming can
also be used to track the rupturing process of large earthquakes
(Spudich & Cranswick 1984; Goldstein & Archuleta 1991; Huang
2001) and identify and locate secondary sources due to seismic
scattering (Gupta et al. 1990; Frost et al. 2013).

In general, both polarization analysis (Jurkevics 1988) and CBF
can be used to determine the backazimuth of the incoming wave-
field. In comparison, the latter method is generally superior to the
former one (Harris 1990; Kvaerna & Ringdal 1992) in that the lat-
ter can also obtain the apparent slowness of an incoming wavefield.
CBF is robust for determining the parameters of backazimuth and
apparent slowness of the incoming signal, however, these parame-
ters have poor resolution at low frequencies (Frost et al. 2013; Gal
et al. 2016). As a result, it has poor capability of separating mul-
tiple signals with different directions (Gal et al. 2016). Recently,
Frost et al. (2013) applied the F-statistic (Selby 2011, 2013) to the
array beam to increase its signal-to-noise ratio (SNR), allowing the
analysis of small amplitude arrivals and improving the resolution in
measuring slowness and backazimuth parameters. Gal et al. (2016)
proposed using the CLEAN-PSF algorithm to improve the reso-
lution of CBF by iteratively deconvolution of contributions from
individual sources from beampower of the array. This algorithm
has been successfully applied to ambient noise analysis (Gal et al.
2016).

C© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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Figure 1. A sketch of an incident plane wave from the view in the horizontal plane (a) and vertical plane (b). (a) A plane wave arriving with backazimuth �

(in degree) and slowness s (in s km−1). (b) A plane wave crossing station Sta1 at time t1 and station Sta2 at time t2 with incident angle α and velocity v (km
s−1). D denotes the distance between Sta1 and Sta2, and L marks the distance of the two wave fronts. Black triangles are seismic stations and red star is the
earthquake epicentre. The relationship of slowness s and velocity v is s = sin(α)/υ.

Figure 2. The distribution of substations (triangles) of SEAA. The reference
station S09 is denoted in red, which is at (31.1◦N, 121.1◦E).

In this study, we aim at improving the resolution in estimating
backazimuth and apparent slowness parameters of the incoming
signal based on the concept of compressive sensing (CS) (Donoho
2006; Candès & Wakin 2008; Xenaki et al. 2014). The application
of CS in seismology is not new and there have been several appli-
cations. Yao et al. (2011) utilized CS to determine the earthquake
rupturing process in higher resolution. A novel waveform fitting
method based on CS was proposed in Rodriguez et al. (2012) for
estimation of seismic source parameters.Mun et al. (2015) proposed
an approach based on CS to resolve higher mode Rayleigh wave dis-
persion curves from seismic data. Aharchaou & Levander (2016)
proposed a new high-resolution linear Radon transform based on
CS and applied it to extract signals of interest embedded in teleseis-
mic wavefields. In these applications, they assume that the sources

Figure 3. Polar diagrams of array response functions at different frequencies
for SEAA. (a) 0.5 Hz, (b) 4 Hz, (c) 10 Hz and (d) 20 Hz. For the polar
diagram, the radial axis denotes the slowness from 0 to 0.3 s km−1 and the
tangential axis denotes the backazimuth (clockwise from north) from 0◦ to
360◦. The power is represented with dB unit. The red box denotes the true
point with a backazimuth of 0◦ and a slowness of 0 s km−1.
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Sparsity-constrained seismic array analysis 3

Figure 4. Comparison of polar diagrams for the FK, CLEAN-PSF and SC methods at frequencies of 0.5 and 4 Hz in the case that 10 per cent random noise is
added to the spectrum of one single source. Panels (a) and (b) are for 0.5 and 4 Hz, respectively. Red square in the polar diagram denotes true model parameters.
For visualization, we replace non-zeros in CLEAN-PSF and SC results with a Gaussian kernel that occupies 6 × 6 grid points in the polar diagram.

or model parameters are sparse and thus a sparsity-constrained (SC)
inversion can be applied to this study.

In the following sections, first we will introduce the CBF method
or the FK method, the CLEAN-PSF method and SC array anal-
ysis method, respectively. Second, with a synthetic data set based
on Shanghai Earthquake Agency Array (SEAA), we compare these
three array analysis methods for estimating backazimuth and slow-
ness parameters. Third, we will further compare these three meth-
ods on three other seismic arrays with different station configura-
tions and apertures. Finally, we test the effectiveness of the pro-
posed method on estimating the backazimuth of the 2008 Mw 8.0
Wenchuan earthquake based on SEAA.

2 C O N V E N T I O NA L A R R AY
B E A M F O R M I N G I N T H E F R E Q U E N C Y
D O M A I N

A seismic wave front, which can be assumed as a plane wave if the
source is far away from the seismic array, arrives at the seismic array

consisting of N substations with slowness s (s km−1) and backaz-
imuth � (Fig. 1). For simplicity, 2-D seismic array is taken into
account. ri = [xi yi ] represents the position vector of the i th sta-
tion. The origin of the coordinate system is set at a reference station,
or one of the substations of the seismic array. For the data recorded
at the substations, we define d = [d1(t), . . . , di (t), . . . , dN (t)] as a
2-D data matrix with the size of ns × N , where ns is the number of
data points and di (t) denotes the data at i th station.

In the frequency domain, for a given frequency f0, the beampower
E for the array is calculated using the following equation:

E =
∣∣∣∣∣

1

N

N∑

i=1

Di ( f0) e−j2π f0τi

∣∣∣∣∣

2

, (1)

where j denotes the imaginary unit, f0 denotes the frequency at
which the beampower is computed and Di ( f0) denotes the Fourier
spectrum of di (t) at frequency f0. The delay time τi in the phase
shift term e−j2π f0τi at the i th station is the differential arrival time of
the incoming signal at i th station and the reference station, which
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4 J. Hu, H. Zhang and H. Yu

Figure 5. Comparison of cross-sections of backazimuth and slowness parameters for the FK, CLEAN-PSF and SC array analysis algorithms at frequencies 0.5
Hz (a) and 4 Hz (b). In panels (a) and (b), the left-hand plots show cross-sections through the backazimuth for a sweep of slowness values and the right-hand
plots show cross-sections through the slowness for a sweep of backazimuth parameters in the polar diagram. The green dots in cross-sections are true model
parameters.

is computed as follows (Schweitzer et al. 2002):

τi = − (xi sin� + yi cos�) s. (2)

Essentially, the beampower is obtained by summing the phase-
shifted data over all stations and then squaring the average. In prac-
tice, we discretize the parameters of slowness and backazimuth into
M 2-D grids with M = Sslw × Bbaz, where Sslw and Bbaz denote
the number of grid points in the radial slowness direction and the
number of grid points in the tangential backazimuth direction, re-
spectively. For a small frequency bin around f0, the beampower is
averaged over the frequency bin. By scanning each grid node in the
slowness and backazimuth domain, we can determine the optimal
slowness and backazimuth parameters for the incoming signal at
which the beampower is maximum.

The array response function (ARF) is defined as follows (Rost &
Thomas 2002):

|A (k − k0)| =
∣∣∣∣∣

1

N

N∑

i=1

e jri (k−k0) f0

∣∣∣∣∣ (3)

where k0 = 2π f0s[sin� cos�]T is the target wavenumber vector,
k = 2π f0s ′[sin�′ cos�′]T is the scanning wavenumber, �′ is the
scanning backazimuth and s ′ is the scanning slowness. From eq. (3),

we can see that the ARF is a function of the wavenumber k0, which
is related to the observed signal and the array geometry. For a given
array geometry, the resolution of ARF is poor in the low-frequency
band, whereas there are many local peaks in ARF for the high-
frequency band. In general, larger aperture seismic arrays are used
to analyse low-frequency signals while smaller aperture arrays are
used for relatively high-frequency signals (e.g. Johnson & Dudgeon
1992; Rost & Thmoas 2002). Although the CBF is robust to noise,
it suffers from low resolution and it is difficult to separate multiple
incoming signals with different backazimuth or slowness.

3 S E I S M I C A R R AY A NA LY S I S U S I N G
T H E C L E A N - P S F A L G O R I T H M I N T H E
F R E Q U E N C Y D O M A I N

One way to improve over conventional array beamforming is to
use the CLEAN-PSF algorithm (Gal et al. 2016), which originally
is a technique widely used to remove side lobes of bright stars
from energy maps obtained with telescopes in radio astronomy
(Högbom 1974). This CLEAN-PSF algorithm assumes that the en-
ergy map is constructed by a collection of point sources. It can
find the position and strength of all point sources by first finding
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Sparsity-constrained seismic array analysis 5

Figure 6. Comparison of the polar diagrams for the FK, CLEAN-PSF and SC array analysis algorithms at different frequencies in the case that 10 per cent
random noise is added to the spectrum from two sources. Panels (a) and (b) show results for 0.5 and 4 Hz, respectively. Red square in the polar diagram denotes
true model parameters.

the strongest sources and then iteratively subtracting their contribu-
tions [point spread function (PSF) or ARF] from the energy map.
The application to the seismic ambient noise analysis based on an
array produces better results than conventional array beamform-
ing method (Gal et al. 2016). Here, we first introduce some basics
of the CLEAN-PSF algorithm and then its implementation proce-
dure. For details of the CLEAN-PSF algorithm, refer to Sijtsma
(2007).

The beampower P(k0) at k0 = 2π f0s[sin� cos�]T can be rep-
resented in another way,

P (k0) = w(k0)+C ( f0) w (k0) , (4)

where C( f0) is cross-spectral matrix, w(k0) is a weight vector and
+ is the conjugate transpose. The cross-spectral matrix C( f0) is
defined as

C ( f0) = S ( f0) S( f0)+, (5)

where S( f0) = [D1( f0), . . . , Di ( f0), . . . , DN ( f0)] is the spec-
trum vector at N stations at the frequency f0. The diagonal elements

Cii are real values and represent estimates of the power spectral den-
sity of the signal on station i , while off-diagonal elements Ci j are
complex values and give estimates of the cross-spectral power den-
sity between stations i and j . Note that C( f0) is Hermitian. The
weight vector w(k0) is usually constructed by the normalized steer-
ing vector to achieve the maximum beamforming power as follows:

w (k0) = a (k0)√
a(k0)+a (k0)

, (6)

where a(k0) is steering vector [e jk0r1 , . . . , e jk0ri , . . . , e jk0rN ]T ,
which is different from the common steering vector because of
the phase shift calculated by backazimuth instead of azimuth.

Following Sijtsma (2007) and Gal et al. (2016), the CLEAN-PSF
algorithm removes phase information associated with the strongest
source directly from the cross-spectral matrix. The implementation
of CLEAN-PSF algorithm is as follows:

(1) Calculate the beampower (or the dirty map) of the data re-
ceived by the array using eq. (4) by scanning the backazimuth and
slowness domain (with the dimension of Sslw × Bbaz). Set the clean
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6 J. Hu, H. Zhang and H. Yu

Figure 7. Comparison of cross-sections through polar diagram at different slowness and backazimuth values for frequencies of 10 Hz (a) and 20 Hz (b) using
the FK, CLEAN-PSF and SC algorithms in the case of two sources. The green dots in cross-sections indicate true model parameters.

map with zeros and iter = 0. Note that the dimension of the dirty
map is the same as the clean map.

(2) Find the peak P iter
max of the dirty map and the weight vector

wmax associated with P iter
max.

(3) Subtract the appropriately scaled PSF multiplied with
the strong source strength from the cross-spectral matrix via
C( f0 )iter+1 = C( f0)iter − ηP iter

maxwmaxw+
max.

(4) Place the detected strong source in the clean map with the
scaled strength.

(5) Construct new dirty map by P(k0)iter+1 =
w(k0)+C( f0)iter+1w(k0).

(6) While ||Citer+1|| ≤ ||Citer||, set iter = iter + 1 and repeat
steps (2)–(6).

After several iterations, the above deconvolution operation can
find multiple sources from the original dirty map and can thus
improve the resolution. Here η (0 < η ≤ 1) is the loop gain, which
defines the fraction of the beam considered at each iteration. If small
loop gain is given, the algorithm converges slowly. However, if the
loop gain is too large, the algorithm will miss some weaker sources
that could be overshaded by the side lobes.

For comparison, next we will introduce the SC array analysis
method that improves the resolution on estimating slowness and

backazimuth parameters and has the ability to separate multiple
source signals.

4 E S T I M AT I N G B A C K A Z I M U T H A N D
S L OW N E S S PA R A M E T E R S B A S E D O N
S PA R S I T Y- C O N S T R A I N E D A R R AY
A NA LY S I S

The same as the CBF, we represent the model of slowness and back-
azimuth by M = Sslw × Bbaz 2-D grid nodes. In the parametrized
model, each grid point can be treated as a source for emitting
the plane wave with different slowness and backazimuth param-
eters. With the observed array data, the problem to find the opti-
mal backazimuth and slowness information of the incoming sig-
nal is equivalent to the source localization problem (Yao et al.
2011). Source spectrum at each grid point can be denoted by
X ( f ) = [x1( f ), x2( f ), . . . , xM ( f )]T , where f is the frequency.
The i th source arrives at the nth station with a delay of τni , which
is the function of backazimuth and slowness as well as the station
position relative to the reference station. The station record can be
treated as the linear combination of plane waves from all potential
sources with correct phase shifts. In the frequency domain, the data
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Sparsity-constrained seismic array analysis 7

Figure 8. Comparison of the SC array analysis results with different noise levels of 5–50 per cent at frequencies 0.5 and 4 Hz. Left-hand panels: scattering plots
of slowness and backazimuth parameters inverted at different noise levels and frequencies. Right-hand panels: root-mean-square (RMS) errors of slowness and
backazimuth parameters with respect to true values at different noise levels and frequencies. For each noise level, 200 inversions are performed. Thick black
+ denotes true model parameters.

spectrum at the nth station can be calculated as follows:

dn ( f ) =
M∑

i=1

xi ( f ) e−j2πτni , (7)

where dn( f ) is the displacement or velocity spectrum recorded by
the nth station.

For an array of N substations, we can write system of equations
of eq. (7) into the matrix form with Gaussian distributed white noise
as follows:

d ( f ) = G ( f ) X ( f ) + E ( f ) , (8)

where G( f ) is called the measurement matrix with the element of
Gnm( f ) = e−j2π f τnm , τnm is the delay time from the mth grid node
to the nth station and can be computed using eq. (2), and E( f ) is
the Gaussian white noise spectrum.

In general, the number of grid nodes or the number of potential
sources, M , is much larger than the number of measurements, N .
As a result, there are many possible solutions to satisfy the linear
system eq. (8) because the system is underdetermined (Aster et al.

2013). To better determine the linear system represented by eq. (8),
we can constrain the source spectrum vector X( f ) to be sparse.
The sparsity can be measured by the L0 norm. With the sparsity
constraint, the inverse problem can be represented as follows:

Xsol ( f ) = argmin ||X( f ) ||0
s.t. ||d ( f ) − G ( f ) X( f ) ||2 < ε,

(9)

where ε is the specified tolerance for noise E.
The L0-minimization problem is a non-deterministic polynomial

hard problem and non-convex, thus is computationally expensive
and is likely unstable when there is noise (Baraniuk 2007; Boyd &
Vandenberghe 2004). For this reason, the L0-minimization is often
solved by L1-minimization, which is convex and can thus be solved
by convex function optimization. The L1-minimization for finding
the optimal source spectrum is as follows:

Xsol ( f ) = argmin ||X( f ) ||1
s.t. ||d ( f ) − G ( f ) X( f ) ||2 < ε,

(10)
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8 J. Hu, H. Zhang and H. Yu

Figure 9. Array configurations and response functions for three different aperture arrays of GRF, PSAR and ASAR. (a) Geographical locations and station
configurations of three arrays. (b) Array response functions for three arrays at the corresponding optimal frequencies.

where ||X( f )||1 =
M∑

i=1
|xi ( f )| . Here, we adopt Orthogonal Matching

Pursuit to solve the L1-minimization problem in eq. (10) (Tropp &
Gilbert 2007), which has the advantage of easy implementation,
fast convergence and low complexity.

5 S Y N T H E T I C T E S T S O F T H R E E A R R AY
A NA LY S I S A L G O R I T H M S B A S E D O N
S E A A

We first test the proposed method by using the synthetic data created
with SEAA. SEAA consists of 16 substations with station spacing

about 600 m (Fig. 2). These substations are irregularly distributed
and span an aperture of ∼3 km. By selecting station S09 as a
reference station, the ARF is calculated for the incoming plane
wave with different frequencies of 0.5, 4, 10 and 20 Hz, respectively
(Fig. 3). It can be seen that at low frequency (e.g. 0.5 Hz), the main
peak of the ARF is not sharp, indicating the array resolution is poor.
In comparison, at high frequency (e.g. 20 Hz), the ARF has sharper
main peak but also has many local peaks.

We first test the performance of the proposed method for the
case of one source. Assuming an incoming plane wave signal with
backazimuth of 270◦ and slowness of 0.1 s km−1, we test the SC
method at frequencies of 0.5 and 4 Hz. For the synthetic test, we
first generate the theoretic spectrum based on eq. (1). Then we add
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Sparsity-constrained seismic array analysis 9

Figure 10. Synthetic waveforms and their spectra for three arrays of GRF, PSAR and ASAR. Left-hand panels: configurations of two sources (red stars) and
array stations (black triangles) for three arrays. Middle panels: synthetic waveforms with real noise added. The SNR is 1.25. Red box denotes the time window
used for selecting signals for spectra analysis. Right-hand panels: frequency spectra of selected noisy signals. Red dots denote the selected frequencies that are
optimal frequencies for each array.

Gaussian distributed random noise, which has the amplitude of 10
per cent of the data amplitude and randomly shifted phases, to the
data in the frequency domain. For the inversion, the slowness varies
from 0 to 0.3 s km−1 with an interval of 0.01 s km−1, and the
backazimuth varies from 0◦ to 360◦ with an interval of 2◦.

In the case of one source, we compare the performances of the FK,
CLEAN-PSF and our proposed SC array analysis algorithms. At 0.5
Hz, all FK, CLEAN-PSF and SC methods are capable of recovering
the true backazimuth and slowness parameters (Fig. 4a), but both
of the CLEAN-PSF and SC methods have much higher resolution
in resolving the two parameters than the FK method (Fig. 5a). This
is because at 0.5 Hz the SEAA has very poor resolution (Fig. 3)
and as a result the polar diagram of the beamforming power from

the FK method does not show any clear peak. In comparison, at 4
Hz the FK method has higher resolution than that in the case of 0.5
Hz (Figs 4a and b), as indicated by a sharper main peak in the ARF
(Fig. 3b). In comparison, the CLEAN-PSF and SC methods still
have higher resolution in resolving both slowness and backazimuth
parameters (Figs 4 and 5).

We also test the performance of the SC method when there are
two sources with the same amplitude in the slowness and back-
azimuth domain (Fig. 6). Two sources have the same slowness of
0.2 km s−1 but with different backazimuths of 90◦ and 180◦, re-
spectively. The parametrization of the model space is the same as
that in the case of one source. We also add Gaussian distributed
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10 J. Hu, H. Zhang and H. Yu

Figure 11. Comparison of the polar diagrams at optimum frequencies for three seismic arrays of GRF, PSAR and ASAR from the FK, CLEAN-PSF and SC
array analysis algorithms in the case of two sources.

random noise at the same level as the case of one source. At fre-
quencies of 10 and 20 Hz, the FK method can resolve correct
parameters of backazimuth and slowness for two sources. How-
ever, there are many local peaks in the ARF, which is a challenge
to recognize correct source parameters when there is no a pri-
ori information about sources (Fig. 6). In comparison, the SC and
CLEAN-PSF array analysis methods clearly result in two strong
peaks in the polar diagram (Fig. 6). This can be further seen from
cross-sections through the backazimuth and slowness for a sweep
of slowness and backazimuth values, respectively (Fig. 7). It shows
that for the FK method there are many local peaks around the target
model parameters. In comparison, the CLEAN-PSF and SC algo-
rithms produce much fewer local peaks. Furthermore, compared
to the CLEAN-PSF algorithm, our proposed SC method does a

better job and there are almost no local peaks around true param-
eters. This indicates that the SC method performs the best among
the three methods. By choosing an appropriate threshold for the
SC method, we could find true solutions corresponding to largest
peaks.

To test the robustness of the proposed SC method, we add differ-
ent levels of noise (5, 10, 20, 30 and 50 per cent) to the synthetic
data at frequencies of 0.5 and 4 Hz for one source associated with
parameters of slowness of 0.2 s km−1 and backazimuth of 45◦. Then
we perform Monte Carlo simulations for 200 times and analyse the
statistics of all the obtained results (Fig. 8). It can be seen that at
0.5 Hz when the noise level is higher, the root-mean-square (RMS)
differences between inverted and true model parameters of backaz-
imuth and slowness are also greater. For the backazimuth, the RMS
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Sparsity-constrained seismic array analysis 11

Figure 12. Comparison of cross-sections through polar diagrams in Fig. 11 at different slowness values for three arrays using the FK, CLEAN-PSF and SC
array analysis algorithms. Green dots mark true backazimuths.

difference value is about 6.4◦ at 50 per cent noise level, 3.2◦ at 30
per cent noise level and about 0.1◦ at 5 per cent noise level. It can be
seen that at lower frequencies, there could be relatively large uncer-
tainties in the estimated model parameters. However, when the noise
level is relatively low, the proposed SC method can still give reason-
ably good estimation of the model parameters. This indicates that
the proposed SC method can be used to obtain the backazimuth and
slowness parameters of relatively low-frequency teleseismic event
by the small-aperture seismic array. In comparison, for the signal at
higher frequency of 4 Hz, the proposed SC method has the ability
to estimate model parameters of slowness and backazimuth even
when the noise level is up to 50 per cent (Fig. 8). This test demon-
strates that our proposed SC method has the ability to robustly
estimate the slowness and backazimuth parameters at high noise
levels.

6 C O M PA R I S O N O F T H E F K ,
C L E A N - P S F A N D S C A R R AY A NA LY S I S
A L G O R I T H M S O N O T H E R A R R AY S
W I T H D I F F E R E N T A P E RT U R E S

In addition to SEAA, we also test the performances of three array
analysis algorithms on three other arrays with different station con-
figurations and apertures in the case of two sources. These three
arrays include the Gräfenberg array (GRF), which consists of 13
broadband stations and extends ∼100 km north–south and ∼40
km, the Pilbara Seismological Array (PSAR) in northwestern Aus-
tralia, which has an aperture of ∼25 km and is established based on
the spiral-arm concept and the Alice Springs Array (ASAR), which
has an aperture of ∼10 km and consists of dense stations (Rost &
Thomas 2002; Kennett et al. 2015; Gal et al. 2016). Fig. 9 shows the
station configurations and the ARFs at the corresponding optimal
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12 J. Hu, H. Zhang and H. Yu

Figure 13. Comparison of cross-sections through polar diagrams in Fig. 11 at different backazimuth values for three arrays using the FK, CLEAN-PSF and
SC array analysis algorithms. Green dots mark true slowness values.

frequencies for three arrays. The same as the test case shown in
Fig. 6, we test two sources having the same slowness of 0.2 s km−1

but with different backazimuths of 90◦ and 180◦, respectively. The
sources are Ricker wavelets with different central frequencies of 0.1
Hz for GRF, 0.6 Hz for PSAR and 0.9 Hz for ASAR, respectively.
Data are then added with real seismic noise recorded by SEAA with
an SNR of 1.25 (Fig. 10). The power and origin time of two sources
are the same.

It can be seen that the larger the aperture of the array, the more
sensitive is the array to lower frequency signals (Fig. 9). At opti-
mum frequencies, the FK method can determine backazimuth and
slowness values close to true values with small biases for three
seismic arrays (Figs 11–13). Among three arrays, ASAR performs
the best because there are more substations and they are distributed
more evenly in space. However, the resolution of the FK method is
very poor for all three arrays. Overall, CLEAN-PSF and SC array
analysis algorithms perform at similar levels and are much better

than the FK algorithm in resolution for three arrays with differ-
ent station configurations and apertures. In comparison, there are
fewer local peaks in the polar diagram from the SC algorithm than
the CLEAN-PSF algorithm, suggesting overall the SC algorithm
performs better. It is also noted that for seismic arrays GRF and
PSAR, the SC algorithm cannot retrieve two sources in equal pow-
ers although true sources have the same powers. But for the array
ASAR, the SC algorithm can resolve two sources in higher fidelity.
Actually, compared to arrays GRF and PSAR, all three methods
perform better on array ASAR, which is most likely due to even
spatial distribution of array substations.

7 A P P L I C AT I O N T O T H E 2 0 0 8 M w 8 . 0
W E N C H UA N E A RT H Q UA K E , C H I NA

Here, we apply the proposed SC array analysis method to the 2008
Mw 8.0 Wenchuan earthquake data recorded by the SEAA, which

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/1/1/5104381 by U

niversity of Southern C
alifornia user on 10 M

ay 2019



Sparsity-constrained seismic array analysis 13

Figure 14. Vertical component waveforms of the 2008 Mw 8.0 Wenchuan earthquake recorded at 16 substations of SEAA. Left-hand panel: record of 1600 s.
Right-hand panel: zoom-in record around the P-wave arrival. The green shaded area (7 s) delineates the time window used in the SC method.

Figure 15. The frequency spectrum of the selected waveform around first
P-arrival recorded at reference station S09. The green shaded area denotes
the frequency band 0.2–0.8 Hz in which the energy is dominant.

is about 1700 km away. Based on its epicentre at latitude 31.01◦N
and longitude 103.42◦E, we can theoretically estimate the backaz-
imuth value of about 274.2◦. Before applying the SC method, we
first remove the instrument response and then the mean from each

recorded seismic waveforms by array stations. The Hamming win-
dow of 7 s is applied to the data starting from the P-wave arrival
before taking the Fourier transform for avoiding the energy leakage.
Fig. 14 shows the recorded waveforms at the SEAA for the 2008
Wenchuan earthquake. From the zoomed-in waveforms around the
first P arrivals, it can be seen they are very similar at array stations.

For the recorded waveforms from 2008 Wenchuan earthquake,
the dominant frequency range is 0.2–0.8 Hz (Fig. 15). For this rea-
son, we choose spectra at the central frequency of 0.5 Hz for the
array analysis. As seen in Fig. 3, for the SEAA the ARF has very
low resolution at 0.5 Hz. As a result, theoretically it lacks the ability
to reliably determine the backazimuth of the 2008 Wenchuan earth-
quake if the FK method is used. The actual application of the FK
method to the Wenchuan earthquake data is consistent with the the-
oretical prediction. Indeed, the FK method cannot reliably estimate
the backazimuth of the 2008 Wenchuan earthquake when using
the SEAA because there is no obvious peak in the polar diagram
(Fig. 16). Numerically, the FK method can still give an estimate of
backazimuth by searching for the maximum beamforming value,
which corresponds to the backazimuth of ∼266◦. In comparison,
the SC method gives a high-resolution estimate of the backazimuth
(∼268◦), which is very close to the theoretical one (the final-row
plots in Fig. 16). For the CLEAN-PSF algorithm, because it first
extracts the highest peak from the FK map in the first iteration, in
the case of one source it gives the same solution as the FK method.
For the apparent slowness parameter, the SC method estimates it to
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14 J. Hu, H. Zhang and H. Yu

Figure 16. Comparison of three array analysis methods of the FK, CLEAN-PSF and SC for the 2008 Wenchuan earthquake recorded by the SEAA at central
frequency of 0.5 Hz. The first-row plots from left to right show the polar diagrams from the FK, CLEAN-PSF and SC methods, respectively. From second to
fourth row, it shows cross-sections through polar diagram through slowness (left) and backazimuth (right) from the FK, CLEAN-PSF and the proposed SC
methods, respectively. The green dot denotes the theoretical backazimuth.
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Sparsity-constrained seismic array analysis 15

Figure 17. Synthetic test of the SC method in the case of extremely low SNR of 0.25 using the SEAA. (a) Source (red) and seismic array (black triangles)
geometry for generating synthetic waveforms. (b) Synthetic noisy waveforms on array substations. Red box denotes the time window for spectra analysis in
(c). (c) Frequency spectra of waveforms enclosed in the red box in panel (b). Red dots denote the optimal frequencies for the array. (d) Polar diagram from the
SC array analysis. Red square marks the true source parameters. (e and f) show cross-sections through the polar diagram in panel (d) at different slowness and
backazimuth values.

Figure 18. Synthetic test of the SC array analysis method on two very close sources. (a) Polar diagram for the FK method. (b) Polar diagram for the SC
method. Two red squares denote the two sources with the same slowness of 0.2 s km−1 and slight different backazimuths of 80◦ and 90◦. (c and d) are the
cross-sections through the polar diagram in panel (b) at different slowness and backazimuth values. Green dots indicate the true source parameters.
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16 J. Hu, H. Zhang and H. Yu

Figure 19. Synthetic test of sliding time window for estimating source parameters with different window sizes by the FK and SC array analysis methods. The
time window lengths are (a) 1T, (b) 2T, (c) 4T and (d) 5T, respectively. In each panel, the top plot shows a noisy trace recorded by a station of the SEAA,
with the red box marking the time window for array analysis. The middle and bottom plots show the estimates of backazimuth and slowness parameters by
continuously sliding the time window using the FK (blue) and SC (red) methods.

be around 0.11 s km−1, corresponding to the apparent velocity of
9.1 km s−1, while the FK method cannot reliably give the estimation
of the slowness value (the second-row plots in Fig. 16). For this real
data application, both of CLEAN-PSF and SC methods give much
higher resolution results over the FK method, and the SC method is
slightly better in estimating the backazimuth.

8 D I S C U S S I O N S

We have tested the proposed SC array analysis algorithm when the
signal is contaminated by different levels of noise (Fig. 8). The tests
show that the SC method can still reliably estimate parameters of
backazimuth and slowness even when the noise level reaches up to
50 per cent. To further test the ability of the proposed SC method

in the case of extremely low SNR, we generate noisy waveforms
with an SNR of 0.25 (Fig. 17). The source is located 20 km away
from the substation S09 of the SEAA with a slowness of 0.2 s
km−1 and a backazimuth of 270◦ (Fig. 17). The source is a Ricker
wavelet with a central frequency of 4 Hz. It can be seen that even the
SNR is extremely low, the peak value in the polar diagram obtained
from the proposed SC method can still give a good estimate of
slowness and backazimuth parameters (Fig. 17). However, there are
many local peaks in the polar diagram that are away from the real
solution. This indicates that in an extremely noisy environment or if
the signal is too weak, we should be cautious of picking peaks in the
polar diagram. The best practice would be only choosing the largest
peak, which could very likely correspond to the true solution.

We also test the ability of the proposed SC method to discern
individual sources with the SEAA if they are very close in slowness
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Sparsity-constrained seismic array analysis 17

and backazimuth parameters. For this test, we construct two sources
with the same slowness of 0.2 s km−1 but slightly different back-
azimuths of 80◦ and 90◦ (Fig. 18). In this case, no noise is added
to the data. At 4 Hz, both the FK and SC methods cannot separate
two nearby sources. The resulted parameter of backazimuth is close
to the average of backazimuth parameters for two sources and the
slowness is close to the true value. This test indicates that if sources
have very close slowness and backazimuth parameters, it may be
equivalent that these sources average into one source and the SC
method could only determine the average source parameters.

The proposed SC array analysis method, similar to other array
analysis methods, requires to select a time window for analysis. In
case we do not know when the signal arrives at the array, generally
a time window is used to continuously slide through the recorded
data for detecting signals. Here we test how the time window length
affects the array analysis results of the proposed SC method and
how the sliding time window strategy works with the SC method.
For comparison, we also apply the FK method on the same data set.
For the time window length, we use the signal period T to represent
it. We use four different time window sizes of 1T, 2T, 4T and 5T, and
slide the time window along the noisy waveform with an overlap of
half of the window size (Fig. 19).

In this case, the distribution of stations and source as well as the
central frequency of the source wavelet are the same as the case
shown in Fig. 17, but SNR is 1.25. It can be seen that for different
time window sizes, the estimation of backazimuth is accurate when
the signal appears in the time window (Fig. 19). However, for the
time window length of 1T, the slowness estimation has slightly
higher errors. With the increase of the time window length, the
slowness estimation is more accurate. This test shows that the time
window length should be around 2T in order to have a reliable
estimation of slowness and backazimuth. However, when the time
window length is too large, the time resolution for detecting signals
is worse. This test also shows that for sliding time window along
the data, it is possible to detect when the signals appear by checking
if both parameters of slowness and backazimuth are stable for the
duration of the time window (Fig. 19).

9 C O N C LU S I O N S

In this study, we have developed a new method to use seismic
array to determine parameters of backazimuth and slowness of seis-
mic event based on SC inversion. Compared to the conventional FK
method used for seismic array analysis, the proposed SC method has
much higher resolution, even at low frequencies. We have validated
the SC method based on both synthetic and real data recorded by
the SEAA, as well as synthetic data recorded on three other arrays
with different station configurations and apertures. The synthetic
tests show that the SC method is able to better separate multiple
sources than the FK method, and can determine source parameters
even in the cases of low SNR. Compared to another advanced array
analysis method CLEAN-PSF, our newly developed SC method per-
forms better with fewer local peaks around true peaks in the polar
diagram. The application of the SC method to the 2008 Wenchuan
earthquake with the SEAA further demonstrates its capability to
determine slowness and backazimuth parameters even at low fre-
quencies, where the FK method fails to do so. Our proposed SC
method can be effectively used to extend the capability of seismic
array for detecting signals from continuous recorded data and reli-
ably determining backazimuth and slowness parameters of seismic
events at both low and high frequencies.
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