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Abstract 19 

We present a new algorithm for derivations of 1-D shear wave velocity models from surface 20 

wave dispersion data using convolutional neural networks (CNNs). The technique is applied 21 

for the continental China and the plate boundary region in Southern California. Different 22 

CNNs are designed for these two regions and are trained using theoretical Rayleigh wave phase 23 

and group velocity images computed from reference 1-D Vs models. The methodology is 24 

tested with 3260 phase-group images for continental China and 4160 phase-group images for 25 

Southern California. The conversions of these images to velocity profiles take ~23 s for 26 

continental China and ~30 s for Southern California on a personal laptop with the NVIDIA 27 

GeForce GTX 1060 core and a memory of 6 GB. The results obtained by the CNNs show high 28 

correlation with previous studies using conventional methods. The effectiveness of the CNN 29 

technique makes this fast method an important alternative for deriving shear wave velocity 30 

models from large data sets of surface wave dispersion data.  31 
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 32 

1. Introduction 33 

Surface wave tomography has been widely used to image Earth structures at various scales 34 

in different tectonic regions. Surface wave dispersion curves are utilized mainly to determine 35 

shear wave speed (Vs) models, but are also sensitive to density and compressional velocity (Vp) 36 

models (Liu et al., 2018; Curtis et al., 1998; Lin et al., 2008; Zhou et al., 2006). In general, 37 

surface wave tomography adopts a two-step approach: group or phase velocity maps at 38 

different periods are first determined and then a series of 1-D Vs models beneath each grid cell 39 

are inverted using phase and/or group velocity values at that node. A linearized inversion 40 

approach requires selecting optimum regularization values and an appropriate initial velocity 41 

model to stabilize the inversion (e.g. Herrmann, 2013). In addition, the data volume of phase 42 

and group velocity measurements are becoming very large with more and denser deployments 43 

of local and regional seismic arrays (e.g. Lin et al. 2012, Ben-Zion et al., 2015) and surface 44 

waves extracted from natural earthquakes (e.g. Yang et al., 2008), ambient noise (e.g. Shapiro 45 

et al., 2005) and artificial sources (e.g. She et al., 2018). This makes classical 1-D Vs 46 

inversions very time-consuming. Nonlinear methods based on the random sampling 47 

(Mosegaard et al., 1995; Sambridge, 1999a, b) have been proposed to directly invert 1D Vs 48 

models from dispersion curves. This can avoid selecting regularization parameters but may 49 

yield biased solutions due to arbitrary sampling and could be time consuming for the 50 

optimization process. Another alternative is to use artificial neural network (Devilee et al., 51 

1999; Meier et al., 2007). Compared to the conventional linear or nonlinear methods, once the 52 

network is trained, it can be used to map the 1D Vs model directly from surface wave 53 

dispersion measurements without inversion. 54 

In recent years, deep learning techniques, and especially convolutional neural network 55 

(CNN) algorithms, have shown significant potential in various seismological applications 56 

including event detection (Perol et al., 2018; Yu et al., 2018), phase picking (Zhu et al., 2018; 57 

Ross et al., 2018; Wang et al., 2019), earthquake early-warning (Li, et al., 2018), first-motion 58 

polarity determination (Ross et al., 2018) and seismic phase association (McBrearty et al., 59 

2018; Ross et al., 2019). Only a few studies applied neural networks to surface wave 60 

tomography (Devilee et al., 1999; Meier et al., 2007; Cheng et al. 2019). As noted by Meier et 61 

al. (2007), there are typically three major steps to solve the inverse problem with the neural 62 

network method (Fig. 1). (1) Assemble a large amount of 1-D Vs models (labels) and the 63 

corresponding phase and group velocity dispersion curves (inputs) for training the network. (2) 64 
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Design a neural network structure which takes phase and group velocities as inputs and outputs 65 

1-D Vs models. (3) Train the designed neural network by minimizing the differences between 66 

its outputs and the labels. Once a neural network is trained, the best fitting 1-D Vs models are 67 

predicted based on the Rayleigh wave phase and group velocity dispersion curves.  68 

In this study, we present two CNNs that are used to preform surface wave tomography for 69 

two different regions, China and Southern California. Our analyses are different from previous 70 

studies using neural networks (e.g. Meier et al., 2007 and Cheng et al., 2019) in three main 71 

aspects. (1) We use CNNs rather than the shallow neural network utilized in Meier et al. (2007), 72 

which can deal with more complicated nonlinear inverse problems. (2) We construct 1-D Vs 73 

models using finer layers (0.5 km layer thickness), whereas in Meier et al. (2007) and Cheng et 74 

al. (2019) the Vs models involve only five major layers (a sedimentary layer, three crustal 75 

layers, and an upper mantle layer). (3) We employ as inputs both phase and group velocities as 76 

Meier et al. (2007), whereas Cheng et al. (2019) utilized only phase velocities. 77 

The reminder of the paper is organized as follows. In Section 2, we describe the 78 

methodology and demonstrate the process using an example training dataset from the central 79 

western USA. This includes data preprocessing steps, the CNN architecture, and a training 80 

process. In Section 3, we apply the method to datasets obtained from continental China 81 

(Section 3.1) and Southern California (Section 3.2). For the application in Southern California, 82 

we use a CNN with a slightly different architecture from the one illustrated in Section 2, which 83 

is trained using a dataset generated based on the regional model of Shaw et al. (2015). In 84 

section 4, we discuss and summarize the results. 85 

 86 

2. Methodology  87 

We utilize one of the most widely used deep learning algorithms, the CNN, to directly 88 

invert surface wave phase and group velocity dispersion curves for isotropic 1-D Vs models. 89 

First, we take a set of derived 1-D Vs models and calculate corresponding theoretical Rayleigh 90 

wave phase and group velocity dispersion curves and corresponding images as the training 91 

dataset (preprocessing step in Fig. 2). Then, a designed CNN takes pairs of phase-group 92 

dispersion images as inputs and provides outputs 1-D Vs profiles. The differences between the 93 

predicted Vs models and corresponding Vs models labeled in the training dataset are 94 

minimized to train the CNN (updating the weights of the CNN). The trained CNN can be used 95 

to quickly map large amounts of Rayleigh wave phase and group dispersion curves to 1-D Vs 96 

models. Since the output depth range needs to be changed with the period range of the input 97 
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Rayleigh wave velocity dispersions, we use two different CNNs for the applications in Section 98 

3. The period ranges are 8-50s for continental China at depths of 0-150km (Section 3.1) and 99 

2.5-16s for Southern California at depths of 0-49.5km (Section 3.2). For a brief introduction of 100 

the data preparation, neural network architecture, and training process, we use a training 101 

dataset generated from surface wave tomography results for the central western USA of Shen 102 

et al. (2013) and a test dataset of Rayleigh wave velocity dispersions for the continental China 103 

from Shen et al. (2016).  104 

 105 

 106 

Figure 1. The workflow for data-driven inversion scheme. The ground truth is one of the 1-D 107 

Vs models used as a label in the training process. Synthetic data are the corresponding phase 108 

and group velocity dispersion curves. CNN stands for the convolutional neural network (the 109 

architecture shown in Fig. 2).  110 

 111 

2.1 Data preparation and preprocessing  112 

The data diversity is important for training a neural network (Deng et al., 2009). We first 113 

extract 6803 1-D Vs models for the central western USA from the surface to a depth of 150 km 114 

with each layer thickness of 0.5 km (Fig. S1) based on the surface wave tomography of Shen et 115 

al. (2013). Corresponding Vp models are computed above 120 km from Vs using the 116 

relationship of Brocher (2005) and a fixed Vp/Vs=1.79 from 120 km to 150 km (Kennett et al., 117 

1995). Density is also computed from Vs following the empirical relation of Brocher (2005). 118 

We then generate corresponding theoretical Rayleigh wave phase and group velocity 119 

dispersion curves for periods in the range 8-50s (8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 120 

35, 40, and 50 s) via the Computer Programs in Seismology (CPS) software package 121 

(Herrmann, 2013). Considering the good performance of CNNs on image processing, we 122 

transform the dispersion curves to energy images (preprocessing part in Fig. 2) by allowing for 123 

uncertainties via a Gaussian function 𝑔𝑇(𝑣0),  124 
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𝑔𝑇(𝑣0) = e−(𝑣−𝑣0)2/𝑟            (1) 125 

where 𝑣0 is the value of phase velocity or group velocity at period T, 𝑣 is a constant array of 126 

60 elements that varies from 2 km/s to 5 km/s with a spacing of 0.05 km/s and 𝑟 is the radius of 127 

the Gaussian function and representative of the estimated uncertainty. The velocity range and 128 

spacing can be changed according to the specific training dataset, and here we set 𝑟 as 0.1 km/s 129 

for a rough estimate of the uncertainty in the dispersion curves. After converting dispersion 130 

curves into images, we obtain 6803 pairs of phase-group dispersion images with a dimension 131 

of 60x17 (height = 60; width = 17).  132 

 133 

 134 

Figure 2. Data preprocessing and the architecture of the convolutional neural network (used in 135 

Section 3.1). In Section 3.2, the number of output elements of CNN is changed from 301 to 99 136 

but other parameter setups are the same. 137 

 138 

2.2 The CNN Architecture 139 

The CNN used in this study comprises four convolutional layers and one fully connected 140 

layer (Fig. 2). The CNN has 2 input channels that take phase and group dispersion images and 141 

outputs a best fitting 1-D Vs model. For the continental China case, the input images have 142 

dimensions of 60x17 and the output 1-D Vs profile is discretized into 301 layers. The numbers 143 

of filters at each convolutional layer are, from shallow to deep, 4, 8, 16, and 16. For each 144 

convolutional layer, we set the kernel size equal to 3 and stride equal to 1, and apply a 145 

zero-padding operation in each convolutional layer. To further avoid the vanishing gradient 146 

problems, activation function LeakyReLu (𝑓(𝑥) = 𝑥, 𝑖𝑓 𝑥 > 0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0.01𝑥) is applied 147 

at each activation layer (Maas et al., 2013) located right after the convolutional layer (red bars 148 

in Fig. 2). Since the inputs dimension is small, we do not employ a pooling layer that is often 149 

included in a conventional CNN architecture.  150 



 

 6 

Mapping phase-group dispersion images to 1-D Vs profiles belongs to the category of 151 

regression problem. The weights of the neural network are optimized to minimize the mean 152 

squared error (MSE) using the training dataset. The loss function used to train the CNN is 153 

defined as: 154 

𝐽 = ‖𝒎𝑝 − 𝒎𝑡‖
2

2
                     (2) 155 

where 𝒎𝑝 and 𝒎𝑡 are the predicted and ground-truth labels, respectively.  156 

 157 

2.3 Training 158 

We randomly split 80% of the whole dataset as the training dataset and 20% as the 159 

validation dataset. The validation dataset is excluded from the training process and only used to 160 

guide parameter tuning and avoid overfitting. The maximum number of epochs is set to 600 to 161 

ensure the training process converges. For each epoch, we randomly shuffle the whole input 162 

dataset to decrease the risk of creating batches that are not representative of the overall training 163 

dataset. We use the adaptive moment estimation (Adam) optimizer with a learning rate of 1e-5 164 

and other parameters set by default to minimize the loss function (Kingma et al., 2014). We 165 

initialize weights with uniform distribution and use a batch size of 64 considering a tradeoff 166 

between efficiency and generalization performance (Keskar et al., 2016). The training 167 

parameter setups are the same for both Sections 3.1 and 3.2. 168 

 169 

3.1 Application to continental China 170 

In this section we conduct two experiments, named Test1 and Test2, to study the impact of 171 

the training dataset on the performance of the CNN. For Test1 and Test2, we employ two 172 

different training datasets, named Dataset1 and Dataset2, with same control parameters 173 

(learning rate, batch size, etc.) to train the CNN. Then, we use two CNNs trained separately 174 

with those two training datasets to invert Vs models using the actual Rayleigh wave dispersion 175 

curves measured in continental China. The two CNNs based models are evaluated by 176 

comparing with the Vs model of Shen et al. (2016).  177 

Dataset1 comprises 6803 1-D Vs models (left panel of Fig. S2) extracted from the central 178 

western USA tomographic model of Shen et al. (2013) and the corresponding theoretical 179 

Rayleigh wave phase and group dispersion images (section 2.1). For Dataset2, we augment 180 

Dataset1 with additional 675 1-D Vs models (right panel of Fig. S2) extracted from the Tibet 181 

region (white box in the top panel of Fig. 3) results of Shen et al. (2016) and the corresponding 182 

theoretical dispersion images. Shen et al. (2016) measured the Raleigh wave group and phase 183 



 

 7 

velocity dispersion curves for a period range of 8-50s in continental China. Those dispersion 184 

measurements were used to determine a 3-D Vs model for the top 150 km of continental China 185 

via a Bayesian Monte Carlo inversion. Here we use the dispersion measurements of Shen et al. 186 

(2016) as the test dataset for Test1 and Test2. For the test dataset, both phase and group velocity 187 

dispersion curves are required to be within the period range of 8-50s at each grid node. We 188 

linearly interpolate those phase and group velocity dispersion curves and generate phase-group 189 

dispersion images based on equation 1. A total of 3260 pairs of phase-group velocity 190 

dispersion images are produced for the test dataset of continental China, which covers most of 191 

continental China (the bottom panel in Fig.3). 192 

The training losses as a function of epochs show for both tests a dramatic decrease (from ~4 193 

km/s to ~0.15 km/s) after the first 15 epochs (Figs. S3 a&b). After 600 epochs, the final losses 194 

converge to ~0.05 km/s and we take the CNNs at epoch 600 as the final trained CNNs for both 195 

tests. These are then used to estimate 1-D Vs models from dispersion measurements for 196 

continental China. It takes ~1.5 hour to train the CNN and ~23 seconds to generate 3260 1-D 197 

Vs models with the entire test dataset for both Test1 and Test2. The CNN-based inversion is 198 

much more efficient computationally than the Bayesian Monte Carlo inversion used in Shen et 199 

al. (2016), which usually requires more than 200 computing hours for the same test dataset. 200 
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 201 

Figure 3. (Top panel) Map view of the surface topography and major tectonic features of China 202 

and surrounding area. White dashed lines outline the main tectonic units and basins, and black 203 

bold lines indicate the plate boundary. The dark red line denotes AA’ profile (shown in Fig. 5). 204 

The white box outlines the region in which the 675 1-D Vs models of Shen et al. (2016) are 205 

extracted to build up the training dataset for Test2. (Bottom panel) Map view of the area 206 

covered by the test dataset. Black stars mark grid nodes that are used to demonstrate the 207 

comparison between the observed and predicted Rayleigh wave dispersion curves in Fig. 6. 208 

 209 

 210 

 211 
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 212 

Figure 4. Comparison of Vs depth slices obtained from (left) Test1, (middle) Test2, and (right) 213 

Shen et al. (2016) at 10 km (top), 40 km (center), and 100 km (bottom), respectively. The thick 214 

dashed lines delineate the tectonic units. 215 

 216 

Although the exact Vs distribution of continental China is unknown, we can take the 3-D 217 

Vs model of Shen et al. (2016) as the baseline model and compare results from Test1 and Test2. 218 

Note that the CNN training dataset for Test2 includes Vs information from the Tibet region, 219 

which is significantly different compared to the Vs model of the central western USA in Shen 220 

et al. (2013). Figure 4 shows comparisons of Vs distributions given by Test1, Test2, and Shen 221 

et al. (2016) at depths of 10, 40, and 100 km. The results of Test1 and Test2 show high 222 

similarity to the baseline 3-D Vs model in eastern, southern, northern, and northeast China, 223 

especially for several main tectonic units including SCB, OB, NCB (see keys in Fig. 3). For 224 

JGB and TB, the Vs values from Test1 and Test2 are systematically larger than those of the 225 

Shen et al. (2016) for all three depths. In the Tibet region, however, Vs values from Test1 are 226 

larger than those of the baseline model at the depths of 40 and 100 km, while Vs values from 227 

Test2 are close to those of Shen et al. (2016) at all three depths. This is because the 1-D Vs 228 
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profiles in Tibet region are significantly different from those of the training dataset used to 229 

train the CNN in Test1.  230 

Furthermore, we compare Vs models from Test1 and Test2 to results of Shen et al. (2016) 231 

along a vertical cross-section AA’ at a depth range of 5–120 km (Fig. 5), which crosses SLB, 232 

OB and Tibet region. We exclude the top 5 km Vs structures due to a lack of sensitivity at 233 

shallow depth as illustrated in Shen et al. (2016). Overall, the Vs distributions of all three 234 

cross-sections are similar except for the Tibet region. In general, the crustal thickness (the areas 235 

marked by red-yellow color in Fig.5) decreases from Tibet to SLB for all three cross-sections, 236 

which is consistent with previous imaging results (He et al., 2014; Xin et al., 2018). 237 

 238 

 239 

Figure 5. Comparison of Vs vertical cross sections along profile AA’ for Test1, Test2 and Shen 240 

et al. (2016). (a) Topography along AA’ profile. OB and SLB represent Ordos basin and 241 

Songliao basin, respectively (shown in Fig. 3). (b) Vs model of Test1. (c) Vs model of Test2. (d) 242 

Vs model of Shen et al. (2016). 243 

 244 
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To quantify the quality of the model given by the CNN, we examine the data fitting 245 

between the input and model-predicted dispersion curves. For each location, the data misfit is 246 

defined as: 247 

𝑀𝑖𝑠𝑓𝑖𝑡 = [
1

𝑁
∑ (

𝑑𝑖
𝑜𝑏𝑠 − 𝑑𝑖

𝑐𝑎𝑙

𝜎𝑖
)

2𝑁

𝑖=1

]

1
2

      (3) 248 

where 𝑑𝑖
𝑜𝑏𝑠  is the observed Rayleigh wave phase or group velocity, 𝑑𝑖

𝑐𝑎𝑙  is the value 249 

predicted by the corresponding model, 𝜎𝑖 is the uncertainty of the phase or group velocity, 𝑖 250 

is the index of the discrete phase and group velocity measurements, and 𝑁 is the number of 251 

dispersion measurements.  252 

Figure 6 shows the resulting dispersion fitting at two example gird nodes located in Tibet 253 

region and OB for both tests. The 1-D Vs profiles (Test1, Test2, and baseline model of Shen et 254 

al. (2016)) and corresponding dispersion curves are also shown for comparison. The misfits at 255 

the Eth grid node (upper panels of Figs. 6a&b) for Test1, Test2, and the baseline model are 9.29, 256 

1.06, and 1.05, respectively. The misfits at the Fth grid node (bottom panels of Figs. 6a&b) for 257 

Test1, Test2, and the baseline model are 0.87, 0.73, and 1.93, respectively. Both models from 258 

Test1 and Test2 at the Fth grid node in OB yield smaller misfit values than the model of Shen et 259 

al. (2016), while the model from Test1 fails to fit the dispersion measurements at the Eth grid 260 

node in Tibet region. This indicates that the CNNs give inaccurate estimate 1-D Vs models 261 

when a biased Vs distribution is assumed in the training process. More examples of such 262 

dispersion fitting are shown in Figs. S4 & S5 in the supplementary material.   263 
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  264 

Figure 6. Comparison of observed and predicted dispersion curves for Test1 (a) and Test2 (b) at 265 

two selected nodes as shown in Fig. 4. Left and middle panels show the comparisons of 266 

Rayleigh wave group and phase dispersion curves, respectively. The red line in each panel 267 

represents the observed dispersion curve and error bars indicate a range of one standard 268 

deviation about each respective mean value. The right panels illustrate the comparison of 1-D 269 

Vs profiles obtained from the CNN based method and Shen et al. (2016). Green and blue lines 270 

depict the predicted dispersion curves from Test1 and Shen et al. (2016), respectively. For the 271 

Eth grid node, the misfits are 9.29 for Test1, 1.06 for Test2, and 1.05 for Shen et al. (2016). For 272 
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the Fth grid node, the misfits are 0.87 for Test1, 0.73 for Test2, and 1.92 for the Shen et al. (2016) 273 

model. 274 

  275 

The spatial distribution and histogram of dispersion misfits for Test1, Test2, and baseline 276 

model of Shen et al. (2016) are shown in Figs. 7a&b. The average misfit values are 3.03 for 277 

Test1, 1.97 for Test2, and 1.37 for the baseline model (Fig. 7b). The average misfit value of the 278 

baseline model is slightly larger than ~0.76 reported in Shen et al. (2016). This is because Shen 279 

et al. (2016) used a different scaling relationship to obtain Vp and density values from Vs, and 280 

the amount of data from continental China and surrounding area (Shen et al. 2016) is larger 281 

than that used in this study.  282 

As shown in Fig. 7a, regions in the eastern part of continental China show generally small 283 

misfit values (< 2), suggesting the dispersion curves are well fitted for both Test1 and Test2, 284 

whereas the dispersion data is poorly fitted in Test1 for the Tibet region. In the CDT region the 285 

misfit of Test2 is less than that of Test1, indicating that the CNN of Test2 provides better 286 

estimations of the Vs structure there. Since the Vs distribution of the CDT region is not 287 

included in the training datasets of both tests, this likely suggests that the diversity of 1-D Vs 288 

profiles in the Tibet region is sufficient to represent the complexities in the CDT region.  289 

For model uncertainty estimates, we take Test1 as an example to illustrate the results. In 290 

order to perform a statistical analysis, we split the dataset in the same way to that of Section 2.3. 291 

The randomly splitting dataset process is performed 15 times to produce different training 292 

datasets. Then, those different datasets are subsequently used to train 15 CNNs, respectively. 293 

The trained CNNs are used to estimate 1-D Vs models with the entire test dataset of Test1, 294 

independently. The standard deviation of Vs at each layer is calculated (Figs. S6a&b). The 295 

mean standard deviation of Vs values from those CNNs is ~0.06 km/s (Fig. S6c), suggesting 296 

that the Vs model given by CNN is insensitive to the selection of training dataset when 1-D Vs 297 

profiles are sufficiently accurate. We cannot estimate the actual Vs model uncertainty, which is 298 

related to the uncertainty of weights updated in the CNN during the training as well as errors in 299 

dispersion curves, so the reported uncertainty is underestimated.  300 
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 301 

Figure 7. Dispersion misfit maps (a) and the corresponding histograms (b) for Test1 (left), 302 

Test2 (middle), and Shen et al. (2016) (right). For Test1, Test2, and Shen et al. (2016) models, 303 

the mean misfits are 3.03, 1.95, and 1.89, respectively. We do not compare the misfit maps of 304 

Shen et al. (2016) with those of Test1 and Test2 due to a difference in Vp and density setups 305 

between our study and Shen et al. (2016). 306 

 307 

 308 

 309 

 310 

 311 

 312 
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 313 

Figure 8. Map view of the Southern California plate boundary region. Red dots represent the 314 

spatial distribution of the observed Rayleigh wave phase and group dispersion curves used in 315 

this study. Thin black lines denote the main fault surface traces in Southern California. The 316 

gray-shaded background depicts the topography. The blue star marks the selected node that is 317 

used to show the comparison between the observed and predicted Rayleigh wave dispersion 318 

curves in Fig. 11. 319 

 320 

3.2 Application to Southern California 321 

Assuming the same initial 3-D Vs model, can the CNN based tomography perform as well 322 

as the traditional methods (e.g. Herrmann, 2013; Shen et al., 2013)? The southern California 323 

region provides a good opportunity to answer this question as several dense seismic networks 324 

and seismic velocity models (Lee et al., 2014; Shaw et al., 2015) are available in this plate 325 

boundary region. Recently, Qiu et al. (2019) performed Eikonal tomography for Southern 326 

California using more than 300 seismic stations and provided isotropic Rayleigh wave phase 327 

and group velocity maps with a grid size of 0.05º×0.05º over a period range of 2.5-16s (Fig. 8). 328 

These Rayleigh wave velocity maps were jointly inverted at each grid node using the velocity 329 

model of Shaw et al. (2015; hereinafter referred to as CVMH) as an initial model and the CPS 330 

(Herrmann, 2013) to obtain a set of 1-D Vs profiles for the top 50 km. The 1-D Vs profiles were 331 

assembled to construct a 3-D Vs model. 332 

To perform a direct comparison between the CNN based model and the results of Qiu et al. 333 

(2019), we use the same Rayleigh wave phase and group velocity maps of Qiu et al. (2019) and 334 
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depth discretization from the surface to a depth of 49.5 km with 0.5 km layer thickness. The 335 

CNN architecture is the same as Section 3.1 except for the output dimension size (99 – the 336 

number of layers). For the training dataset, we extract 24554 1-D Vs profiles from the CVMH 337 

and generate corresponding theoretical phase and group velocity dispersion curves of Rayleigh 338 

waves over a period range of 2.5-16s. The Vp and density are also given by the CVMH. We 339 

then generate corresponding phase and group dispersion images following the processing steps 340 

described in Section 2.1 (equation 1). We use a velocity range of 1.0km/s-4.5km/s for 341 

constructing the dispersion images. For the test dataset, phase and group dispersion images are 342 

generated using the Rayleigh wave velocity maps of Qiu et al. (2019). Finally, we have 4160 343 

pairs of Rayleigh wave phase and group dispersion images as the input test dataset. 344 

The training parameter setups (maximum number of epochs, batch size, learning rate, etc.) 345 

are the same as those used in Section 3.1. The final loss converges to ~0.06 km/s (Fig. S3c). 346 

Convergent results are achieved after 600 epochs without overfitting and the trained network at 347 

epoch 600 is used to estimate the 1-D Vs models from the input dispersion images. It takes ~4.5 348 

hours to train the new CNN and ~30 seconds to generate all the 1-D Vs models, while more 349 

than 30 hours are required to invert the same dataset in Qiu et al. (2019).  350 

Due to a lack of Rayleigh wave velocity data at periods shorter than 3s or longer than 16s, 351 

we cannot resolve the structures in the top 3 km and below 20 km (Qiu et al., 2019). For this 352 

reason, Fig. 9 only shows the comparison of Vs depth slices between the CNN based model, 353 

results of Qiu et al. (2019) and the initial model CVMH at depths of 3-15 km. The derived 354 

CNN-based model overall shows consistent features compared to Qiu et al. (2019). However, 355 

the velocities in the Peninsular Ranges and Salton Trough region from the CNN model are, 356 

respectively, higher and considerably lower than those of Qiu et al. (2019). The large-scale 357 

geological features observed in the CNN model are consistent with those of the CVMH model, 358 

while the variations in velocity values are much larger in the CNN-based model. Figure 10 359 

shows the spatial distributions of Rayleigh wave velocity dispersion misfit (equation 3) for the 360 

CVMH, CNN based model, and Qiu et al. (2019). The average misfits are 4.53, 1.49, and 1.72 361 

for the CVMH, CNN based model and Qiu et al. (2019), respectively. In Qiu et al. (2019) the 362 

Vp/Vs ratio and Moho depth are fixed in the inversion and the average misfit is ~0.6, which is 363 

smaller than the value obtained in this study. The larger misfit from the CNN based model is 364 

likely caused by different scaling relations between Vp and Vs used to compute theoretical 365 

Rayleigh wave dispersion curves. In general, large misfits are seen in the Salton Trough region 366 

relative to other regions in the results of Qiu et al. (2019). However, the misfit values in the 367 
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Salton Trough region is similar to the other regions in the CNN based model, suggesting the 368 

dispersion data are likely better fitted by the CNN model than Qiu et al. (2019) in the Salton 369 

Trough region (Fig. 11). The average misfit of the initial model CVMH is a factor of ~3 larger 370 

than that of the CNN based result, suggesting the CNN based model significantly improves the 371 

fitting of the input dispersion data. Overall, the CNN based Vs model fits the input Rayleigh 372 

wave dispersion data better than CVMH and similar to the results of Qiu et al. (2019). 373 

 374 

 375 

 376 

Figure 9. Comparison of the Vs depth slices extracted from the CVMH (left), CNN (middle), 377 

and results of Qiu et al. (2019) (right) at 3 km, 7 km, 10 km, and 15km. The thin black lines 378 

delineate surface traces of main faults in Southern California. The thick line represents the 379 

coastal line.  380 
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 381 

Figure 10. Misfit maps (a) and histograms (b) of the CVMH, CNN, and Qiu et al. (2019). The 382 

average misfits are 4.53 for CVMH, 1.49 for CNN, and 1.72 for Qiu et al. (2019).  383 

 384 

 385 

Figure 11. Comparison of the observed and predicted Rayleigh wave dispersion curves for the 386 

CNN based model, Qiu et al. (2019), and CVMH at the selected node marked by blue star in 387 

Fig. 8. Left and middle panels show the comparisons of the observed and predicted Rayleigh 388 

wave group and phase dispersion curves, respectively. The red curve in each panel represents 389 

the observed dispersion curves and error bars indicate a range of one standard deviation about 390 

each respective mean value. 1-D Vs models used to generate predicted dispersion curves are 391 

illustrated in the right panel. Green, black, and blue lines depict the dispersion curves predicted 392 

by the CNN model, Qiu et al. (2019), and CVMH, respectively. The misfit values are 0.58 for 393 

the CNN based model, 3.3 for the Qiu et al. (2019), and 16.2 for the CVMH model.  394 

 395 

4. Discussion and conclusions 396 

The ongoing significant increase in the number of seismic stations produces big datasets 397 

that require fast processing methods. In this study we demonstrate that properly trained CNNs 398 
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provide highly effective tools for converting surface wave dispersion measurements directly to 399 

shear wave velocity models. The CNNs bypass the need to select carefully an appropriate 400 

initial model and inversion parameters, and they replace time-consuming nonlinear inversions 401 

with rapid direct mapping of phase and group velocity dispersion curves to model velocity 402 

results. 403 

The effectiveness of the proposed CNN-based technique is tested on two different datasets 404 

associated with continental China and Southern California. Compared with the earlier method 405 

of Meier et al. (2007), we use deep neural network that can better represent highly complex 406 

velocity models. Different from Cheng et al. (2019) that used deep neural network for surface 407 

wave tomography from phase velocities, we utilize both phase and group velocities as inputs. 408 

In addition, in contrast to Meier et al. (2007) and Cheng et al. (2019) that generated dataset 409 

based on a reference model with a small number of layers, we use training datasets associated 410 

with Vs models derived in previous studies with many layers that are 0.5 km thick each. The 411 

application of the CNN to continental China shows great potential for deriving Vs models 412 

using a relatively small training dataset (Test1 in Section 3.1). The analysis also demonstrates 413 

that increasing diversity in the training dataset enhances the performance of the CNNs (Test2 414 

in Section 3.1). Both the CVMH model and results of Qiu et al. (2019) have large dispersion 415 

misfits in the Salton Trough region. The significant improvement in fitting dispersion 416 

measurements in that region (Figs. 10&11) using CNN suggests that the CNN-based results are 417 

less affected by the initial model than those of classical inversion schemes (Qiu et al. 2019).  418 

Our applications of CNNs to surface wave tomography employ dispersion curves data over 419 

different period ranges for continental China and Southern California, targeting a depth range 420 

of 0-150 km for continental China and 0-50 km for Southern California. The results are 421 

consistent with previous studies using conventional methods but our method is 422 

computationally far more efficient. This advantage will become increasingly important as 423 

training datasets accumulate and vast new datasets are recorded. Future applications can 424 

include monitoring structures (e.g., fault zones, volcanos, reservoirs) in real time with 425 

CNN-based time-dependent tomography using all results at the monitored locations as training 426 

datasets. 427 

The model uncertainty associated with the CNN results are difficult to estimate. This is a 428 

common problem in deep learning, which impacts the ability to interpret the outputs. We 429 

obtain low bound uncertainty estimates of the results by using an ensemble of perturbed 430 

training datasets. An improve procedure may implement validation and iterative improvements, 431 
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where in each iteration forward calculation results based on the derived CNN models are 432 

compared to data. Additional future improvements include using deep mixture density network 433 

to estimate the uncertainty of the outputs, and including receiver function results (Bodin et al., 434 

2012; Shen et al., 2013) and lateral discontinuities between geological units as constrained in 435 

the output models.  436 

 437 

Data and code availability 438 

The CNN is implemented using the deep-learning frame of Pytorch-0.4 library. The 439 

training and prediction processes are performed on a laptop with a NVIDIA GeForce GTX 440 

1060 core and a memory of 6 GB. For Section 3, scripts and training and test data sets are 441 

available at https://github.com/jhsa26/SurfTomoCNN. 442 
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Figure S1. Vs labels of the training dataset in Test1. Six different depths are shown by 

nearest-neighbor interpolation with 6803 1-D Vs profiles from the surface to a depth of 150 

km. The left bottom inset shows the map of USA and the red rectangular outlines the region 

of the Vs labels. 



 

Figure S2. 1-D Vs profiles from the training datasets of Test1 (left) and Test2 (right). 



 

Figure S3. The training loss as a function of epoch for the training dataset (blue dotted curve) 

and validation dataset (red dotted curve). (a) CNN trained in Test1. (b) CNN trained in Test2. 

(c) CNN trained in the Southern California case. The inset is a zoom-in from epoch 15 to 

epoch 600.  



 

Figure S4. Dispersion fitting for Test1 at nodes of A, B, C, G, H, and I. All symbols are the 

same as those shown in Fig. 7. SWS is short for Shen et al. (2016). 

 

 

 



 

Figure S4. (Continued). 



 

Figure S5. Same as Fig. S4 but for Test2. 



  

Figure S5. (Continued). 

 

 

 



 

Figure S6. (a) The map of Vs standard deviations at each layer for the depth range of 

0-150km based on the tested 3260 1-D Vs models. (b) A zoom-in map of (a) at a depth range 

of 0-60km. (c) The histogram of Vs standard deviations at each layer of all tested 1-D Vs 

models. The average standard deviation of Vs is 0.06 km/s for all layers of tested models. 

 

 

 


