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Abstract. For seismic location and tomography, it is important to pick
P- and S-wave first arrivals. However, traditional methods mainly deter-
mine P- and S-wave first arrivals separately from a signal processing per-
spective, which requires the extraction of waveform attributes and tuning
parameters manually. Also, traditional methods suffer from noise as they
are operated on the whole earthquake record. In this paper, we propose
a deep neural network framework to enhance picking P- and S-wave first
arrivals from a sequential perspective. Specifically, we first transform the
picking first arrival problem as a sequence labelling problem. Then, the
rough ranges for P- and S-wave first arrivals are determined simultane-
ously through the proposed deep neural network model. Based on these
rough ranges, the performance of existing picking methods can be greatly
enhanced. Experimental results on two real-world datasets demonstrate
the effectiveness of the proposed framework.
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1 Introduction

An earthquake record consists of three components, recording waveform under
different directions. When an earthquake occurs, there are two kinds of seismic
wave traveling inside the earth, known as P-wave and S-wave. P-wave always
arrives earlier than S-wave. Figure 1 gives a three-component earthquake record
sliced from continuous waveform data. The problem we focused on in this paper
is to effectively identify P- and S-wave first arrivals from earthquake records.
Many automatic picking methods were proposed [3,12]. These methods focus
on detecting waveform samples where various waveform attributes change signif-
icantly. However, these methods suffer from three main challenges: First, these
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methods are generally sensitive to noise. They tend to perform poorly when pro-
cessing low signal-to-noise ratio (SNR) data. Second, manually designed wave-
form attributes may fail to fully utilize information contained in sequences.
Third, these methods usually need a lot of effort on tuning parameters manu-
ally. With the development of neural networks, there have been some automatic
picking methods utilizing Artificial Neural Networks (ANNs) [8]. However, these
ANN methods still need designing input attributes. Besides, these methods do
not make full use of sequential characteristic in the earthquake data.

time (0.01s)

Fig. 1. A three-component earthquake record.

To solve the above challenges, in this paper, we propose a deep neural net-
work framework to enhance picking P- and S-wave first arrivals from earth-
quake records. To be specific, the picking first arrival problem is transformed as
a sequence labelling problem. Then, we use the proposed deep neural network
model for determining the rough ranges of P- and S-wave first arrivals simultane-
ously. By using these rough ranges, the performance of existing picking methods
can be greatly enhanced since the influence of noise can be reduced and effort of
tuning parameters can be saved a lot as the ranges of parameters like window
size have been narrowed. In summary, we have made several contributions in
this paper:

— We transform the picking first arrival problem into a sequence labelling prob-
lem, with the aim to capture the temporal relationship of sequential data.

— We propose a general framework based on deep learning for the transformed
problem. Specifically, our framework takes waveform data as input, produces
a state sequence indicating the rough ranges for P- and S-wave first arrivals.
Based on rough ranges, we can pick P- and S-wave first arrivals precisely.

— We have conducted extensive experiments on two real-world datasets to eval-
uate our framework. The results indicate that our framework outperforms
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the state-of-art methods for identification of seismic wave first arrivals from
earthquake records.

2 Related Works

2.1 Existing First Arrival Picking Methods

One classical picking method is the short term average to long term average
ratio (STA/LTA) [3]. This method is based on comparison between a Short
Term Average (STA) of a characteristic function of the signal and a Long Term
Average (LTA) of this characteristic function. The point where the STA/LTA
ratio exceeds the threshold value is regarded as wave first arrival.

Another classical method is autoregressive Akaike information criterion (AR-
AIC) [12]. It is assumed that a seismogram can be divided into locally stationary
segments, where each is modeled as an AR process and the intervals before
and after the wave first arrival are two different stationary processes [12]. This
method uses AIC function to find the point representing optimal separation of
stationary time series which is interpreted as the wave first arrival [12].

In addition, there have been some attempts on picking first arrivals using
ANNs [8]. Different attributes are manually designed as input to ANNs. It is
worth noting that all these above works need designing attributes manually and
ignore the sequential characteristic of earthquake record.

Therefore, in this paper, we apply deep neural networks to pick first arrivals
from earthquake records. One work similar to the spirits of ours is [15]. In their
work, they proposed a model of 7 Long Short-Term Memory (LSTM) [5] layers
to pick first arrivals directly. However, the length of sequence can reach several
thousand. Without performing dimensionality reduction, their method fails to
pick first arrivals from earthquake records with long sequence.

2.2 Sequence Labelling

In order to utilize the sequential characteristic of earthquake records, we trans-
form the picking first arrival problem as a sequence labelling problem.

Before widely use of neural networks, some graphical models have been pro-
posed, such as hidden Markov Models (HMMs) [9], conditional random fields
(CRFs) [6] and their variants.

With the development of neural networks, HHM-neural network hybrid
approaches have been extensively studied [10,11]. The basic idea is to use HMMs
to model the sequential structure of the data, and the neural networks to provide
localized classifications [4]. Early hybrid methods used ANNs to achieve segment
classification and HMMs to align the classification results into a temporal classi-
fication of the entire label sequence [10,11]. Since the main function of ANNs is to
introduce contextual information, Recurrent Neural Networks (RNNs) [4] seem
to be a better choice. Some HMM-RNN hybrid methods have been studied [11].
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3 The Proposed Framework

Our proposed framework works as follows. First, we pass preprocessed three-
component earthquake records to the proposed PICKINGNET network to
get rough P- and S-wave first arrival points. Then, we determine rough ranges
based on rough first arrival points. Finally, we apply traditional methods on
waveform sliced according to two rough ranges to pick first arrivals precisely.
Fig. 2 presents the proposed framework.
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Fig. 2. Proposed framework.

3.1 Proposed Network Framework

The length of sequence can vary from hundreds to several thousand, it is hard to
label the sequence directly to pick P- and S-wave first arrivals precisely. There-
fore, we design the proposed PICKINGNET according to the following thought.
First, we perform dimensionality reduction on original sequence to get sequence
s’. Every point in s’ represents a segment of original sequence. Then, we model
the temporal relationship of s’ through RNNs. At last, we label every point of
s’ with three kinds of states, which are noise, P-wave and S-wave. The output of
proposed network is a sequence of states of s’, where every point indicates the
corresponding segment of original sequence is noise, P-wave or S-wave. In this
paper, we determine every point in s’ represents a 1-second segment of original
sequence. Our proposed PICKINGNET is shown in Fig. 2(b).

We denote original sequence length as [. As input is three-component record,
we can regard the dimensionality of input data as [ x 3.

Our proposed PICKINGNET consists of two parts: (1) Dimensionality reduc-
tion; (2) Temporal modelling and labelling.
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Dimensionality Reduction. We know CNNs [7] are good at extracting fea-
tures. However, here we use CNNs to reduce the length of sequence as well. We
use two 1d convolutional layers, each layer followed by a pooling layer. Specifi-
cally, convl has 8 feature maps with the length of 4 and conv2 has 16 feature
maps with the length of 4. Both pooling window size and stride of pooling layers
are 2 so that we can reduce the length of sequence.

The output dimensionality is (I/4) x 16 where [/4 and 16 denote the length of
sequence and the feature dimensionality of every point, respectively. With sam-
pling rate of 100 Hz, to achieve every point in dimensionality reduced sequence
represents a 1-second segment of original sequence, the sequence length should
be reduced to [/100. Therefore, by concatenating features of every 25 points, the
shape of output is (1/100) x 400. Further, followed by the fully connected layer
FC1, the feature dimensionality of every point is reduced to 100.

Temporal Modelling and Labelling. Then we pass the output of fully con-
nected layer FCI to RNN layers. In this problem, we can access the past and
future contexts of every point. Also, we know a general earthquake sequential
record includes noise, P-wave, S-wave and noise in order. Therefore, we use two
layers of Bidirectional Long Short-Term Memory (BiLSTM) [13] to model tem-
poral relationship, where every LSTM cell has 100 units.

After temporal modeling, we pass the output of the BiLSTMs to the fully
connected layer FC2 followed by a softmax layer to label the sequence obtained
from previous step. Every point of the output indicates the state of the corre-
sponding 1-second segment of the original sequence. There are three kinds of
states: noise, P-wave and S-wave.

3.2 Picking First Arrivals Precisely

With the state sequence produced by network, we pick up the first point labelled
with p as the P-wave rough first arrival, the first point labelled with s as the
S-wave rough first arrival. With rough first arrivals, we get the rough ranges for
both P- and S-wave first arrivals by slicing waveform before and after the P- and
S-wave rough first arrivals. We apply existing methods on waveform segments
within two rough ranges to pick first arrivals precisely.

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate the proposed approach on two real-world datasets. The
first dataset contains continuous waveform data in August, 2008 collected by
16 seismic stations located on Sichuan Province, China and its neighboring
province [16]. In this dataset, there are 14431 earthquake records. The second
dataset contains continuous waveform data in August, 2014, after Napa earth-
quake in Northern California, USA [1]. In Napa dataset, there are 178 earthquake
records. P- and S-wave first arrivals of both datasets are manually picked.
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For the first dataset, we divide dataset into training set, validation set and
test set with proportion of 60%, 10% and 30%. The labelled data of second
dataset is not large enough for network training. To verify the transferability of
our model, we use the network trained from Sichuan dataset to test performance
on the Napa dataset.

Comparison Schemes. We use the rough ranges for P- and S-wave first arrivals
to enhance three traditional first arrival picking methods, which are classical
STA/LTA (CSL) [14], recursive STA/LTA (RSL) [14] and AR-AIC [12]. The
common way is to employ these traditional methods on the whole earthquake
record.

With the rough ranges, we enhance three traditional methods by changing
slicing scheme. In this paper, we slice waveform of 3s before and after P- and
S-rough first arrivals as rough ranges. As a record has three components, we run
existing methods and our proposed method on three components. We choose the
earliest P- and S-wave first arrivals of three components as final picking results.

All the input sequences have been preprocessed with detrending and bandpass
filter [2].

Evaluation Criterion. Our metrics are hit-rates and average deviations of P-
and S-wave picking performance, which are represented as as hit-p, hit-s, avgd-p
and avgd-s respectively. We regard manually picking results as standard first
arrivals. In this paper, we define a first arrival picking deviating from standard
first arrival less than 1s as a hit picking.

The hit-rate is the ratio of hit picking records to the all records, reflecting
the success rate of picking performance. The average deviation is average picking
deviation on hit picking records, reflecting the precision of picking performance.

Model Parameters. We add L2 regularization to convl and conv2 layers and
use dropout and clip gradients tricks to prevent overfitting, the dropout rate is
0.3. The loss function we use is cross-entropy loss. The learning rate is set to
be 0.0005. For convolutional layers and fully connected layers, we take ReLLU as
activation function. For BiLSTM layers, we take Tanh as activation function.

4.2 Experimental Results

Effectiveness of Proposed Method. Table1 shows the comparison results
of three baselines and our method on Sichuan test set in terms of hit-rates and
average deviations of P- and S-wave picking performance. From Table 1, we can
see that the performance of existing methods has been improved a lot with rough
ranges. Without rough ranges, the performance of existing methods degenerates
a lot with SNR declining, which confirms that our method is robust to noise.
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Table 1. The comparison results of three baselines and our method on Sichuan test
set in terms of hit-rates and average deviations, where RG denotes rough range.

SNR |Method | hit-p(+RG) hit-s(+RG) avgd-p(+RG) avgd-s(+RG)

>20 |CSL  |96.22% (99.11%) | 71.41% (88.45%) 0.3586s (0.3086's) | 0.4561s (0.4179s)
RSL  |96.22% (99.04%) 51.27% (89.20%) 0.3359s (0.2762's) 0.4562s (0.4000 s)
AR-AIC|92.78% (99.38%) | 71.62% (91.07%) 0.2455s (0.1771s)|0.3462s (0.2639s)

220|CSL | 82.26% (94.94%) | 53.78% (79.39%) | 0.4315s (0.3862s) 0.5038 s (0.4667 s)
RSL  |80.89% (93.38%) 48.59% (80.39%) 0.4230s (0.3713s)|0.4886s (0.4511s)
AR-AIC|86.26% (96.88%) 60.59% (88.88%) 0.3068s (0.21955s) 0.3760s (0.2854s)

<2 |CSL  |74.84% (89.33%) 40.81% (72.12%)|0.4511s (0.3994 s) 0.5472s (0.5025s)
RSL  |72.51% (89.64%) 40.97% (73.21%) 0.4492s (0.3958 s) | 0.5414s (0.4837 s)
AR-AIC|79.91% (93.61%)|52.65% (85.75%) 0.3339s (0.24715s)|0.4189s (0.3119s)

Transferability of Proposed Method. Table2 shows the result on Napa
test set. Note that due to the lack of labelled data in Napa data set, here we
use network obtained from Sichuan data set. We can see, with rough ranges,
the performance of existing methods has been improved a lot except the avgd-s
of AR-AIC. We believe it is because the hit-s of AR-AIC is low which means
AR-AIC only picks S-wave first arrivals successfully on easily picked records,
which results in a small avgd-s on hit picking records. The result confirms the
transferability of our method, we believe it is because our network has captured
the pattern of seismic waves.

Table 2. The comparison results of three baselines and our method on Napa test set
in terms of hit-rates and average deviations, where RG denotes rough range.

Method
CSL

hit-p(+RG) hit-s(+RG) avgd-p(+RG) avgd-s(+RG)

91.01% (96.63%)

75.28% (87.64%)

0.2134s (0.1583s)

0.3492s (0.2737s)

RSL

88.76% (94.94%)

53.93% (93.26%)

0.1814s (0.1530s)

0.3199s (0.2932s)

AR-AIC

89.89% (96.63%)

69.10% (93.82%)

0.0653s (0.0471s)

0.1555s (0.2096 s)

5 Conclusion

In this paper, we studied the problem of picking P- and S-wave first arrivals from
earthquake records. Unlike most existing neural network methods, we proposed a
deep learning based framework for effectively picking P- and S-wave first arrivals.
The proposed framework takes waveform data as input, transforms picking first
arrival problem into a sequence labelling problem. Then we used the proposed
deep neural network model PICKINGN ET for determining the rough ranges
for P- and S-wave first arrivals simultaneously. By using these rough ranges, the
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performance of existing picking methods can be greatly enhanced. Our frame-
work makes full use of the sequential characteristic of earthquake records and
saves effort designing features manually. Finally, we demonstrated the effective-
ness of our method on two real-world datasets. In future work, we plan to extend
our approach on continuous seismic waveform data, with the aim to detect earth-
quakes and pick first arrivals simultaneously.
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